메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
연세대학교 언어정보연구원 (구 연세대학교 언어정보개발원) 언어사실과 관점 언어사실과 관점 제47권
발행연도
2019.1
수록면
25 - 57 (33page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this research is to analyze the particle errors of English-speaking Korean learners and to investigate the statistical features of the particle errors using Error-annotated Korean Learners’ Corpus. The Korean Learners’ Corpus is very useful learner language data for both Korean teachers and Korean learners. Specifically, Error-Annotated Korean Learners’ Corpus is extremely valuable since it provides detailed analysis and feedback for each error. The analysis of English-speaking Korean learner data shows that particle errors are occurring across all levels of Korean learners and it shows that Korean teachers and learners should focus on how to reduce particle errors. Korean learners and teachers need to focus on subject (i/ga), object (eul/leul), topic (eun/neun) and locative/adverbial (e and eseo) particles more because these particles account for 64.41% of total particle errors. Specifically, Replacement and Omission are the most frequent and the second most frequent particle error types respectively and they account for 86.74% of total particle errors. Particle errors needs to be looked at from a larger perspective to find out better solutions to reduce them, because particles are closely related to verbs, nouns and syntactic structures. Once a bigger annotated corpus is available, we may be able to extract not only erroneous particles but also related verbs and nouns, and figure out what causes the particle errors and how to reduce them. The results could be used to provide better feedback to Korean learners and to develop better textbooks and curriculum.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0