메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국청각언어재활학회 Audiology and Speech Research Audiology and Speech Research 제15권 제1호
발행연도
2019.1
수록면
38 - 48 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Cochlear implant (CI) users typically complain of impaired ability to understand speech in noise. Previous studies indicate that the detrimental effects of noise can be measured by the change of neural activities. The current study examined the noise effect on psychoacoustic measures while at the same time used cortical evoked potentials to quantify the change of neural processing of speech sounds caused by noise. Methods: Ten adult CI users and fourteen normal-hearing subjects were participated in this study. Cortical auditory evoked potentials (CAEPs) were recorded from 64 scalp electrodes in both quiet and noise conditions each during passive and active listening. Speech stimuli were synthesized consonant-vowels with 0 ms and 50 ms voice onset time (VOT). N1/P2 amplitudes and latencies were analyzed as a function of VOT and listening condition. Behavioral measures as well as a variety of speech perception tasks were conducted. Results: For good CI users, speech perception scores in noise condition significantly decreased compared to those in quiet condition for most speech perception tasks. N1 and P2 latencies became prolonged with noise masking compared to the quiet condition. However, unlike what we expected, attentional modulation of CAEPs was not revealed in noise listening. The P2 latency measures were correlated with vowel and consonant perception in noise. Conclusion: The effects of noise masking on temporal processing can be reflected in cortical responses in CI users. These results suggest that N1/P2 measures to VOT stimuli with noise masking may represent the change of neural activities in challenging listening situations.

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0