메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제8권 제6호
발행연도
2017.1
수록면
29 - 36 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 인간의 시각인지 형태와 유사한 결과를 갖는 Saliency map의 정확성과 신뢰성을 향상시키기 위해 학습한 다중 특징을 기반으로 개선된 saliency map 방법을 제안한다. 기존의 Saliency map 생성에서 색상 기반의 돌출 영역 추정 시 발생하는 역 선택이나 부분손실 등의 부정확한 결과가 나오는 것을 보완하기 위해 제안하는 방법은 학습 기반의 다중 특징 데이터를 생성하였다. 원 영상에서의 색상 패턴과 특이성을 갖는 영역의 구별과정을 거쳐 영상에서 고려될 특성들을 분석하고, LAB 색 공간 기반의 색상 분석을 이용한 유사 돌출 영역 정의와 특이성 영역의 조합으로 학습 데이터를 구성한다. 구성된 학습 데이터와 주파수, 색상, 초점정보 등의 low level feature로 구한 돌출 정보를 결합한 뒤 최종 saliency map을 구하기 위해 재구성 과정을 거쳐 부정확한 saliency 영역을 최소화하도록 하였다. 실험을 위해 Ground truth 이미지를 각 실험 결과와 비교하여 precision-recall 및 F-Measure 값을 구한 결과 기존 알고리즘에 비해 7%, 29%의 향상된 결과를 나타내었다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0