메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제19권 제5호
발행연도
2017.1
수록면
2,311 - 2,321 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In general, cokriging is used to estimate the observation value of the primary variable using the secondary variables. One of the problems that can arise in cokriging is that when the correlation between primary and secondary variable is low, the secondary variable has no role as a secondary variable and can not be use in cokriging. But we can not say that it is not meaningful, as it may be a special function structure (e.g. exponential). Therefore, to settle this problem we propose a method that carry out cokriging after transforming the variable in case there is a secondary variable that has lower correlation with a primary variable. To show validation of proposed method, we perform simulation study that simulates the locations, primary variable, and two secondary variables related with primary variable. We assume that the two secondary variables (V, W) has correlation with a primary variable (U). Let the variables U and V has high correlation value while variables U and W has low correlation value. We perform a cokriging for above two cases and compare the result based on the PRESS statistic and use as a criterion for the cross-validation of the proposed method. The simulation result for cokriging between U and V variable is superior than that for cokriging between U and W variable.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0