메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제26권 제6호
발행연도
2015.12
수록면
1,409 - 1,416 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기온의 변화는 인간의 건강뿐 아니라 동식물의 성장, 경제, 사회, 산업, 문화 등의 전 분야에 영향을 준다. 본 연구에서는 수원시 2003년-2012년 기온을 기상자료, 온실가스자료, 대기자료를 이용하여 자기회귀오차 (autoregressive error)모형으로 월별로 분석하였다. 기온을 위한 기상자료로는, 풍속, 강수량, 일사량, 운량, 습도를 사용했고, 온실가스자료는 이산화탄소 (CO2), 메탄 (CH4), 아산화질소 (N2O), 염화불화탄소 (CFC11), 대기자료는 미세먼지 (PM10), 이산화황 (SO2), 이산화질소 (NO2), 오존 (O3), 일산화탄소 (CO)을 사용하였다. 기온을 월별 분석한 결과 기상변수로는 일사량, 운량, 풍속이 영향을 많이 주는 것으로 분석되었다. 특히 일사량은 봄, 여름, 가을에 영향을 많이 주고 풍속은 겨울에 영향을 많이 주는 것으로 나타났다. 온실가스변수로는 염화불화탄소와 메탄이기온에 영향을 많이 주고 대기변수로는 오존이 영향을 많이 주는 것으로 타났다. 자기회귀오차모형으로 월별 기온을 43%∼69% 정도 설명할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001377226