메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제12권 제2호
발행연도
2006.1
수록면
141 - 152 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: The identifying schizotypal trait in obsessive-compulsive disorder(OCD) patients is important to predict clinical course, since those patients are hardly overcome through conventional intervention methods. This paper presents the trial of classification method of obsessive-compulsive disorder with schizotypal trait using Frontal-Lobe Function Test(FLFT). Methods: 110 OCD patients are divided into two groups : 27 pure OCD patients, and 83 non-pure OCD patients. After training artificial neural network(ANN) using frontal-lobe function test data of train data(schizophrenia, pure OCD, and normal group), we classify test data(non-pure OCD patients) into one of the three groups. Results: Among the total 83 test data(non-pure OCD patients), 44 patients were classified as schizophrenia, 32 patients as normal, and 7 patients as pure OCD. With respect to the Yale-Brown Obsessive Compulsive Scale(Y-BOCS) data of those classified patients, ordering score in compulsion was significantly different between three groups. Moreover, cluster A socre(Schizoid, Schizotypal) of Personality Diagnostic Questionnaire(PDQ) data showed significant difference between them. Conclusion: The results presented that those OCD patients who are classified as schizophrenia using generated model with machine learning technique is tend to have compulsive symptom of arrangement and schizotypal personality disorder. (Journal of Korean Society of Medical Informatics 12-2,141-151, 2006)

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0