메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제12권 제1호
발행연도
2006.1
수록면
71 - 81 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: To explore the feasibility of using the Bayesian network approach to study health outcomes and evaluate its predictive performance. Methods: The Human immuno-deficiency virus Cost and Services Utilization Study (HCSUS) baseline dataset consisting of 2,864 human immuno-deficiency virus positive adults was used. The Hugin Researcher 6.2TM was used to develop the Bayesian network and Na ve Bayes models. The SAS/STAT PROC LOGISTIC was used to develop the logistic regressions.Results: The area under the receiver operating characteristic curve of the Bayesian network model was statistically higher than that of the Na ve Bayes model, but no higher than that of the logistic regression model using the 8 variables from a previous study. In a second analysis using the 10 most influential predictors discovered by the Bayesian network approach, the Na ve Bayes and the logistic regression performance improved. Conclusion: The BN approaches contributed to the discovery of additional influential predictors that lead to an increase of the models' predictive performance. When attempting to discover unknown relationships that might be missed by traditional analysis methods alone, the use of the Bayesian network as complementary methods may add value. (Journal of Korean Society of Medical Informatics 12-1,71-81, 2006)

목차

등록된 정보가 없습니다.

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0