메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제14권 제1호
발행연도
2008.1
수록면
37 - 44 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: To develop breast cancer prediction models and to compare their predictive performance by using Bayesian Networks (BN), Nave Bayes (NB), Classification and Regression Trees (CART), and Logistic Regression (LR). Methods: The dataset consisting of 109 breast cancer patients and 100 healthy women was used. Hugin ResearcherTM 6.7 and PoulinHugin 1.5, both of which are NB modeling software, were used. For the LR model and CART, ECMiner was used. Results: The highest area under the receiver operating characteristic curve (AUC) was shown in the Tree augmented NB model as .90. The lowest AUC was CART with .48; that of the LR model was .86. Two BN models with prior knowledge and without prior knowledge did not show any difference at all (.64 vs. .65). The lifts of four models (Simple NB, Tree Augmented NB, Hierarchical NB, LR) were 1.9. The AUCs in both the NB and LR models were higher than that of the previously established models that have been published by using LR methods. Conclusion: NB could be preferred to LR in the development of a predictive model to promote regular screening tests and early detection, which is more or less free from statistical assumptions and limitations.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0