메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Khan, Hafiz Mohammad Rafiqullah (Department of Biostatistics, Robert Stempel College of Public Health & Social Work, Florida International University) Saxena, Anshul (Department of Health Promotion & Disease Prevention, Robert Stempel College of Public Health & Social Work, Florida International University) Gabbidon, Kemesha (Department of Health Promotion & Disease Prevention, Robert Stempel College of Public Health & Social Work, Florida International University) Ross, Elizabeth (Behavioral Science Research Corporation, Coral Gables) Shrestha, Alice (Department of Biostatistics, Robert Stempel College of Public Health & Social Work, Florida International University)
저널정보
아시아태평양암예방학회 Asian Pacific journal of cancer prevention : APJCP Asian Pacific journal of cancer prevention : APJCP 제15권 제14호
발행연도
2014.1
수록면
5,571 - 5,575 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: The ability to predict the survival time of breast cancer patients is important because of the potential high morbidity and mortality associated with the disease. To develop a predictive inference for determining the survival of breast cancer patients, we applied a novel Bayesian method. In this paper, we propose the development of a databased statistical probability model and application of the Bayesian method to predict future survival times for White Hispanic female breast cancer patients, diagnosed in the US during 1973-2009. Materials and Methods: A stratified random sample of White Hispanic female patient survival data was selected from the Surveillance Epidemiology and End Results (SEER) database to derive statistical probability models. Four were considered to identify the best-fit model. We used three standard model-building criteria, which included Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) to measure the goodness of fit. Furthermore, the Bayesian method was used to derive future survival inferences for survival times. Results: The highest number of White Hispanic female breast cancer patients in this sample was from New Mexico and the lowest from Hawaii. The mean (SD) age at diagnosis (years) was 58.2 (14.2). The mean (SD) of survival time (months) for White Hispanic females was 72.7 (32.2). We found that the exponentiated Weibull model best fit the survival times compared to other widely known statistical probability models. The predictive inference for future survival times is presented using the Bayesian method. Conclusions: The findings are significant for treatment planning and health-care cost allocation. They should also contribute to further research on breast cancer survival issues.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0