메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제10권 제3호
발행연도
2004.1
수록면
235 - 242 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: The purpose of this study was to explore the potential application of a Bayesian network, an emerging data mining technique, in predicting outcomes using large healthcare databases. Methods: The HIV Cost and Services Utilization Study(HCSUS) dataset, consisting of 2,864 HIV positive adults in the US, was used. A total of 35 variables were selected including one output variable defined as more than one hospitalization in six months representing a sub-optimal pattern of healthcare utilization in HIV care. The HUGIN Researcher 6.2 was used to develop a Bayesian network model with two learning algorithms: 1) Necessary Path Condition(NPC) to construct a Bayesian network structure, and 2) Expectation-Maximization(EM) algorithm to estimate parameters. Results: The area under the Receiver Operating Characteristic(ROC) curve was .72. The accuracy of the prediction model was .66. Sensitivity and specificity were .65 and .66, respectively.Conclusion: The Bayesian network showed fair performance in this prediction problem. This study provides researchers new insight into working with large sets of data, which continue to grow in a number of cases and variables. The repeated testing and refinement of the Bayesian network modeling techniques with other health outcomes in large databases is recommended.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0