메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Mohammad Shaqura (King Abdullah University of Science and Technology) Jeff S. Shamma (King Abdullah University of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
285 - 290 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Mobile robot modeling is a challenging task especially for vehicles with complex nonlinear dynamics. Quadcopter UAVs are agile systems that are often described with a nominal nonlinear model that neglects various complicated dynamic phenomena for the sake of easier analysis and control design. This simplification leads to limiting the vehicle performance. To overcome this issue, an iterative learning approach is presented where a nominal representation of the system dynamics is used in conjunction with flight trials to improve performance. The objective is to learn to aggressively navigate a quadcopter through a course while avoiding obstacles. The performance is assessed by overall navigation time. The trajectory is optimized iteratively by blending an approximate gradient from the simplified nominal model with actual realized flight trajectories. The resulting optimization is a quadratic program, which can be solved efficiently. High fidelity quadcopter simulations with multiple test cases show significantly improved performance through repeated trials.

목차

Abstract
1. INTRODUCTION
2. LEARNING APPROACH
3. QUADCOPTER DYNAMICAL MODEL
4. QUADCOPTER SIMULATION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003538330