메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김판권 (Sogang Univ.) 이진규 (Sogang Univ) 신충수 (Sogang Univ)
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 2017년도 학술대회
발행연도
2017.11
수록면
2,360 - 2,364 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study was to develop a detection algorithm for classification of level walking (LW) and transition walking from level-to-stair (TW-LS) based on plantar pressure. Thirteen subjects performed LW, transition walking from level to stair ascent (TW-LSA) and transition walking from level to stair descent (TW-LSD). The stance time, vertical ground reaction force (vGRF), anteroposterior (AP) and mediolateral (ML) center of pressure (COP) at initial contact (IC) and AP/ ML range of COP were calculated based on plantar pressure during stance phase. The data were evaluated statistically by one-way analysis of variance (ANOVA) and post-hoc comparison was performed at significance level of 0.05. The stance time, AP COP at IC and AP range of COP were significantly different in the comparison among three walking conditions (all, p<0.001). The ML COP at IC was significantly different when TWLSA and TW-LSD were compared by LW (both, p<0.05). The peak vGRF was significantly different when LW and TW-LSD were compared by TW-LSA (both, p<0.05). The multinomial logistic regression models were developed with various combinations of parameters based on comparison results. The accuracy of the model was the highest when the combination of stance time, AP COP at IC and AP range of COP were used. As the result, the probability of classifying LW and TW-LS was 0.952. In conclusion, the multinomial logistic regression model based on plantar pressure can be used for classifying LW and TW-LS with high accuracy.

목차

Abstract
1. 서론
2. 연구 방법
3. 결과 및 토의
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0