메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박시현 (소노엠) 조영복 (대전대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제22권 제10호
발행연도
2018.10
수록면
1,314 - 1,319 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 우리 사회는 아동의 성장발달에 대한 관심이 증가한데 비해 대한성장의학회에서 사용되고 있는 TW3 기반의 최대신장예측 기법은 수동으로 이루어지고 있어 주관적이며, 진료에 있어 다소 많은 시간과 노력을 필요로 한다는 단점이 있다. 또한 현재 딥러닝, 특히 컨볼루션 신경망을 활용해 영상을 분류하는 기술은 인간의 눈보다 더 정확한 수준으로 다양한 분야에 활용되고 있으며 의료분야 또한 예외는 아니다. 따라서 성장 예측의 신뢰도를 높이고, 진단자의 편의성을 증대하기 위해 본 논문에서는 컨볼루션 신경망을 이용해 좌측 수골의 발달 수준을 예측하고 소아청소년의 최대신장예측에 활용되는 딥러닝을 이용한 TW3 알고리즘을 제안한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 컨볼루션 신경망 기반의 TW3 최대신장예측 시스템
Ⅳ. 실험 및 결과
Ⅴ. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000109032