메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Markus Hiller (Friedrich-Alexander-Universität Erlangen-Nürnberg) Florian Particke (Friedrich-Alexander-Universität Erlangen-Nürnberg) Lucila Pati˜no-Studencki (Friedrich-Alexander-Universität Erlangen-Nürnberg) Jörn Thielecke (Friedrich-Alexander-Universität Erlangen-Nürnberg)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2017
발행연도
2017.10
수록면
1,872 - 1,877 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Navigation is one of the key topics in the field of mobile robotics. In many areas of application like Industry 4.0 or fully automated parking, additional external sensors are available as well as pre-existing knowledge about the general building structure. This information is of significant advantage, especially in situations where the perceptive field of the mobile platform is occluded. One method to gain the required information is the probabilistic concept of simultaneous localization and mapping (SLAM). However, most existing approaches generally lack the possibility to incorporate preexisting and external information. In this paper, a solution to the SLAM problem based on a Rao-Blackwellized particle filter is adopted to provide efficient means for exploiting such data. We present an approach that directly incorporates environment knowledge using a context-aware environment model, while establishing reference to a global coordinate frame allowing for a straight-forward fusion with external information sources. The evaluation is performed on real-world data obtained by a mobile platform. The qualitative analysis shows significant improvement in map quality and robustness regarding short sensor outages or reduced perception rates. Establishing a uniform reference frame and reusing data, the proposed approach clearly extends the functional range of SLAM, demonstrating substantial advantages over existing methods.

목차

Abstract
1. INTRODUCTION
2. SLAM WITH RAO-BLACKWELLIZED PARTICLE FILTER
3. CONTEXT-AWARE ENVIRONMENT MODEL
4. GLOBAL SLAM – INCORPORATING BUILDING KNOWLEDGE
5. EVALUATION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001428564