메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강성욱 (엔씨소프트) 이은조 (엔씨소프트)
저널정보
한국정보보호학회 정보보호학회지 정보보호학회지 제27권 제4호
발행연도
2017.8
수록면
6 - 13 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
온라인 게임에서 불법 프로그램을 이용한 게임 봇을 대규모로 운영하는 전문 사설 업체를 속칭 ‘작업장(Gold Farming Group, GFG)’이라고 부른다. 기존에 작업장에서 운영하는 게임 봇은 24시간 쉬지 않고 반복적인 파밍을 통해 수익을 극대화하는 전략을 취했으나 최근 온라인 게임의 계정 가입이 쉬워지고 무료 플레이가 보편화되면서 개개의 게임 봇 계정이 수행하는 플레이 시간이나 취득 재화 수준을 낮추는 대신 수만 개의 계정을 번갈아 가며 운영하는 방식으로 변하고 있다. 이로 인해 플레이 활동 패턴에 기반한 기존의 탐지 모델들이 점차 무력화되고 있으며 진입 초기에 게임 봇을 빠르게 탐지하고 제재하는 방안이 점차 중요해지고 있다. 우리는 게임 봇을 조기에 탐지하기 위한 방안으로 계정 및 캐릭터의 이름이 갖는 특성을 활용한 게임 봇 탐지 기법을 제안한다. 제안한 기법의 유효성을 검증하기 위해 북미에서 서비스 중인 엔씨소프트의 MMORPG인 ‘블레이드 앤 소울’의 약 20만 개 계정 정보를 이용해 탐지 성능을 측정하였다. 실험에 의하면 캐릭터 이름에 대해 간단한 나이브 베이즈 분류기를 적용하는 것만으로도 AUC 기준으로 약 0.901의 성능을 기록하였다.

목차

요약
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 탐지 알고리즘
Ⅳ. 실험 및 평가
Ⅴ. 결론
참고문헌

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001277822