메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Minyoung Kim (Seoul National University of Science & Technology)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.17 No.1
발행연도
2017.3
수록면
10 - 16 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The kernel function plays a central role in modern pattern classification for its ability to capture the inherent affinity structure of the underlying data manifold. While the kernel function can be chosen by human experts with domain knowledge, it is often more principled and promising to learn it directly from data. This idea of kernel learning has been studied considerably in machine learning and pattern recognition. However, most kernel learning algorithms assume fully supervised setups requiring expensive class label annotation for the training data. In this paper we consider kernel learning in the semi-supervised setup where only a fraction of data points need to be labeled. We propose two approaches: the first extends the idea of label propagation along the data similarity graph, in which we simultaneously learn the kernel and impute the labels of the unlabeled data. The second aims to minimize the dual loss in the support vector machines (SVM) classifier learning with respect to the kernel parameters and the missing labels. We provide reasonable and effective approximate solution methods for these optimization problems. These approaches exploit both labeled and unlabeled data in kernel leaning, where we empirically demonstrate the effectiveness on several benchmark datasets with partially labeled learning setups.

목차

Abstract
1. Introduction
2. Background on Kernel Learning
3. Semi-Supervised Kernel Learning
4. Experiments
5. Conclusion
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-002304007