메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이창주 (동양미래대학교) 손병희 (인하공업전문대학)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제42권 제2호
발행연도
2017.2
수록면
366 - 373 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 그로스버그(Grossberg)에 의해 개발된 퍼지 ART 신경 회로망의 성능을 향상시키기 위하여 가변가중평균(VWA) 학습 방법을 제안한다. 기존의 방법인 고속수용저속부호화(FCSR)는 입력패턴이 임의의 카테고리 내에 포함될 때 카테고리를 대표하는 대표패턴의 갱신이 입력패턴과의 거리(유사성)와 관계없이 고정 학습률로 갱신되고, 또한 이를 개선한 가변학습(VL)은 대표패턴과 입력패턴 사이의 거리를 대표패턴의 갱신에 반영하여 카테고리 증식 문제와 패턴 인식률을 개선한다. 그러나 두 방법 모두 학습 시 퍼지 AND에 의한 과도한 학습이 필수적으로 발생하여 카테고리 증식 문제와 패턴 인식 향상에 한계를 갖는다. 제안된 방법은 카테고리를 대표하는 대표패턴의 갱신 시 대표패턴과 입력패턴 사이의 거리를 반영한 가중평균 학습을 적용하여 대표패턴의 과도한 학습을 억제한다. 시뮬레이션 결과 기존의 학습 방법인 고속수용저속부호화(FCSR)와 가변학습(VL) 보다 제안된 가변가중평균(VWA) 학습 방법이 잡음 환경에서 대표패턴의 과도한 학습을 억제하여 퍼지 ART 신경 회로망의 카테고리 증식 문제를 완화하고 패턴 인식률을 향상시키는 것을 보여준다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 퍼지 ART
Ⅲ. 퍼지 ART의 학습 방법
Ⅳ. 실험
Ⅴ. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-567-002325256