메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Joko Hariyono (University of Ulsan) Laksono Kurnianggoro (University of Ulsan) Wahyono (University of Ulsan) Kang-Hyun Jo (University of Ulsan)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2016
발행연도
2016.10
수록면
696 - 700 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The aim of this work is to improve driver awareness by proposing a collision risk analysis method. Pedestrian in the scene is observed by sequential frames from monocular camera mounted on the car. Positional information of object is extracted by projecting the centroid of bounding box on the ground plane. Four elements of collision criteria are constructed which are pedestrian walking direction, its velocity, car speed and relative distance of pedestrian. The analysis of collision risk is performed using fuzzy inference method that is used for calculating the degree of risk. Furthermore, localization of pedestrian is performed according to its risk score. The pedestrian with low collision score is labeled as low risk (green), pedestrian which is increasing its collision score is considered as medium risk (yellow) and pedestrian with high collision score is labelled as high risk (red). A quantitative analysis is performed by measuring effectiveness of this approach. The performance evaluation shows our proposed method achieved average accuracy 87.5% and it significantly outperforms human perception with more than 25% improvement.

목차

Abstract
1. INTRODUCTION
2. COLLISION CRITERIA
3. FUZZY INFERENCE MODEL
4. EXPERIMENTAL RESULTS
5. CONCUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-003-001866591