메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국어학회 한국어학 한국어학 제17권
발행연도
2002.12
수록면
301 - 329 (29page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
It is important to construct Knowledge Base(like Thesaurus, Ontology, Semantic Network, etc) which can be applied to the whole field of natural language processing. For example, WordNet, Kadokawa Thesaurus, and Lexical FreeNet represent the most typical Knowledge Base in natural language processing. Many Knowledge Bases constructed in many fields does not come up to our expectations in Korean language processing. In order to construct an effective Knowledge Base, various language resources such as corpus, dictionary, synonym dictionary and WordNet have to be integrated one another, and the knowledge base has to consist of chain of morpheme-word-phrase-collocation-idiom-corpus. This paper presents a construction method and application of Korean Semantic Network (KSN). The KSN is based on Korean dictionary and Sejong corpus, and is applied to text processing, word sense disambiguation (WSD). semantic analysis, query pattern analysis in information retrieval, and so on. This paper deals with the following contents: (1) We point out problems of thesaurus and semantic network that look like a hierarchical structure of words, and compare KSN with them. The KSN has 1:1 relationship between word and sense, not 1:n relationship that an existing thesaurus and semantic network has (2) We present KSN component parts and a construction method. The KSN has noun semantic hierarchy structure linked to predicates, semantic class, proper noun, semantic information, and so on. The links are resulted from consideration of a paradigmatic relation and a syntagmatic relation within sentence. For reference, the KSN consists of dictionary, morpheme information, parts of speech information, construction information, proper noun information (name entity), noun semantic hierarchical structure, predicates classification structure, semantic class relation, idiom, semantic information, and so on. (3) We Present that WSD using the KSN is more effective than one using an existing thesaurus and semantic network.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-701-002266554