메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김소이 (서울대학교) 최예림 (서울대학교) 김윤정 (서울대학교) 박규연 (서울대학교) 박종헌 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제21권 제11호
발행연도
2015.11
수록면
733 - 738 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
사용자의 인구통계학적 정보는 추천 시스템과 같은 개인화 서비스 발달에 도움이 되며, 모바일 사용 데이터는 사용자의 인구통계학적 정보 예측에 활용될 수 있다. 특히 텍스트 데이터는 성별 예측에 효과적인 것으로 알려져 있지만, 모바일 텍스트 데이터는 프라이버시 이슈가 존재하여 그 활용이 제한되고 있다. 본 연구에서는 디바이스 내 예측 방법론을 제안하여 모바일 텍스트 데이터를 사용하면서 프라이버시 이슈를 최소화는 동시에 사용자의 성별을 효과적으로 예측하고자 한다. 우선, 성별에 따른 특징이 반영된 웹문서를 수집하여 각 성별에 따른 특징적 단어 집합과 특징적 이모티콘 집합을 구성한다. 단어 집합과 이모티콘 집합을 디바이스 내에서 사용자의 모바일 데이터와 비교하여 성별을 각각 예측하고, 두 예측 결과를 앙상블하여 최종적인 성별 예측 결과를 도출한다. 피실험자들의 모바일 텍스트 데이터를 사용하여 성별 예측 실험을 수행하였으며 제안 방법론의 우수한 성능을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 제안 방법론
4. 실험
5. 결론 및 향후연구
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0