메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노기섭 (공군사관학교) 오하영 (아주대학교) 이재훈 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.45 No.2
발행연도
2018.2
수록면
126 - 133 (8page)
DOI
10.5626/JOK.2018.45.2.126

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
추천 시스템은 과도한 정보제공으로 인한 정보 수용자의 결정 제약을 극복하고, 정보 제공자에게는 이윤과 평판을 최대화 시킬 수 있는 해결책으로 등장하였다. 추천 시스템은 다양한 접근법으로 구현이 가능하지만, 추천 대상 객체의 리뷰에서 생성되는 다양한 소셜 정보를 적절히 활용하는 방안은 연구되지 못하였다. 본 논문에서는 기존의 접근법과는 다르게 온라인 리뷰에서 생성되는 클러스터 정보를 이용하여 추천 시스템의 성능을 향상시키는 방식을 제안하였다. 제안하는 방식을 구현하고 실제 데이터를 활용하여 실험한 결과 기존의 방식들보다 성능이 월등히 향상됨을 확인하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 모델링과 시스템 디자인
4. 실험 및 성능 측정
5. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-001778484