메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sung Kun Kim (Chung-Ang University)
저널정보
한국데이터전략학회 Journal of Information Technology Applications & Management Journal of Information Technology Applications & Management Vol.22 No.3
발행연도
2015.9
수록면
1 - 18 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Financial markets are characterized by large numbers of complex and interacting factors which are ill-understood and frequently difficult to measure. Mathematical models developed in finance are precise formulations of theories of how these factors interact to produce the market value of financial asset. While these models are quite good at predicting these market values, because these forces and their interactions are not precisely understood, the model value nevertheless deviates to some extent from the observable market value. In this paper we propose a framework for augmenting the predictive capabilities of mathematical model with a learning component which is primed with an initial set of historical data and then adjusts its behavior after the event of prediction.

목차

Abstract
1. Introduction
2. A Review of Incremental Learning Approaches
3. A Contingent Incremental Learning Approach
4. Evaluation of Our Approach
5. Conclusions
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-005-001978489