메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soowoong Jeong (중앙대학교) Yong-Ho Kim (Chung-Ang University) Seok-Han Lee (Jeonju University) Ho-Geun Song (Hanseo University) Tae-Eun Kim (Namseoul University) Sangkeun Lee (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소 TECHART: Journal of Arts and Imaging Science TECHART: Journal of Arts and Imaging Science Vol.2 No.3
발행연도
2015.8
수록면
42 - 56 (15page)
DOI
10.15323/techart.2015.08.2.3.42

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We present an example and a structural similarity-based scheme to remove artifacts associated with block-based compression schemes. The proposed framework is designed to remove the compression artifacts on the basis of the training sets from the original and their compressed patches across block boundaries. For the data-learning phase, an image is first compressed using various strength levels. Next, each block boundary caused by the compression process is modeled and categorized into classes using a simple classifier. Then, we optimize the classes on the basis of the least mean square optimization approach. By contrast, for the artifact-removal phase, we classify a given block boundary into one of the classes, obtain the filter coefficients from the selected class, and apply these coefficients on two given blocks to remove the artifacts. In particular, the structural-similarity measurement is made only around the edges to effectively preserve the high-frequency image contents. The main advantages of the proposed algorithm are the following: (1) it is an efficient approach using only a fixed number of coefficients to remove blocking artifacts, (2) it requires no prior information on the blocking noise, and (3) it preserves the original image structure using structural similarity. To evaluate the proposed scheme, several state-of-the art approaches are described and compared in terms of peak signal-to-noise ratio, quality metric, and processing time.

목차

Abstract
1. Introduction
2. Background
3. Noise Model
4. Proposed Algorithm
5. Experiments
6. Summary and Discussion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-688-001808025