메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Janghyeok Yoon (Konkuk University) Mujin Kim (Konkuk University) Doyeon Kim (Konkuk University) Jonghwa Kim (건국대학교)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems 제14권 제1호
발행연도
2015.3
수록면
58 - 72 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A primary concern of national R&D plans is to encourage technological development in private firms and research institutes. For effective R&D planning and program support, it is necessary to assess technological impacts that may exist both directly and indirectly among technology areas within the whole technology system; however, previous studies analyze only direct impacts among technologies, failing to capture both direct and indirect impacts. Therefore, this study proposes an approach based on decision-making trial and evaluation laboratory (DEMATEL) to identifying specific characteristics of technology areas, such as technological impact and degree of cause or effect (DCE). The method employs patent co-classification analysis to construct a technological knowledge flow matrix. Next, to capture both direct and indirect effects among technology areas, it incorporates the modified DEMATEL process into patent analysis. The method helps analysts assess the technological impact and DCE of technology areas, and observe their evolving trajectories over time, thereby identifying relevant technological implications. This study presents a case study using Korean patents registered during 2003-2012. We expect our analysis results to be helpful input for R&D planning, as well as the suggested approach to be incorporated into processes for formulating national R&D plans.

목차

ABSTRACT
1. INTRODUCTION
2. THEORETICAL BACKGROUND
3. DATA
4. METHODOLOGY
5. RESULTS
6. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-001312301