메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Chin Sheng Chen (National Taipei University of Technology) Ming Fu Tsai (National Taipei University of Technology) Chun Chan Chiu (National Taipei University of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
5,376 - 5,382 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes an object recognition algorithm based on modified intuitive corner detection and two-stage corner matching. The object recognition algorithm consists of two phases: the off-line training phase and the on-line operating phase. The critical purpose is to construct template database in the training phase. Firstly, the corners are extracted from the template image by the modified intuitive corner detection. The multi-resolution patches are then applied to create the full scale corners’ features. Each corner has its own descriptor based on SIFT and PCA. With this information, the algorithm creates the hierarchical structures of multi-resolution patches to improve the speed of corner matching. In the operating phase, the test images are processed in the same manner mentioned above with single resolution patches, and then the corner will be matched with the multi-resolution patches in the training phase’s database. The two-stage corner matching, coarse and fine matching based on hierarchical structures of corner descriptions appears to reduce the range of patch’s candidates, is then adopted toimprove the matching performance. Finally, the Random sample consensus (RANSAC) criterion is applied to reject the remaining outlier. Experimental results show that our proposed object recognition is reliable and real-time.

목차

Abstract
1. INTRODUCTION
2. PROPOSED ALGORITHMS
3. EXPERIMENTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000762377