메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
I. Morsi (Arab Academy for Science) M. S. Zaghloul (Arab Academy for Science) N.Essam (Arab Academy for Science)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2010
발행연도
2010.10
수록면
1,635 - 1,638 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Voyage data recorders (VDR) enable accident investigators to review procedures and instructions before an incident and help to identify the cause of any accident. The Future data recording should be capable of recording data audio and video during day and night. The recording should be of high integrity, digital as well as independent of ship supplies. Voyage data recorder, popular name black- box, is used for recording all kinds of navigation information. VDR is a data recording system designed for all vessels required to comply with the International Maritime Organization IMO"s and International Convention safety of life at sea SOLAS requirements (IMO). Data from various sensors on board the vessel is collected, digitized, compressed and then stored in an externally mounted protective storage unit. The protective storage unit is a tamper-proof unit designed to with stand the extreme shock impact, pressure and heat, which could be associated with a marine incident (fire, explosion, collision, sinking, etc). This research realizes the importance of obtaining these stored data for accident analysis. This paper considers a real case accident, by downloading and replaying the data of real black box for a sunken ship in the red sea. Eventually, video recorded data of the accident will be more helpful to the investigation.

목차

Abstract
1. INTRODUCTION
2. INFORMATION RECORDED IN THE VDR
3. VDR PROPLEMS AND FUTURE DIRECTION
4. Replay Software Based on Case Study
5. MONITORED DATA
6. RESULTS AND OUTPUTS
7. Software
8. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000939961