메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shariati Nia Mostafa (Isfahan University of Technology) Ghayour Mostafa (Isfahan University of Technology) Mosayebi Masoud (Isfahan University of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2010
발행연도
2010.10
수록면
314 - 318 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Mobile robots consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the existence of multiple solutions in a specified workspace.
This paper presents a methodology in generating paths and trajectories for both the mobile platform and a 3DOF manipulator mounted on it, in the presence of obstacles. Obstacles add kinematics constraint into optimization problem. The method employs smooth and continuous functions such as polynomials. The proposed method includes obtaining time history of the mobile robot motion. It is supposed that the obstacles can be enclosed in cylinders. The platform has been used in this research is a differentially-driven platform. The core of the method is based on mapping the nonholonomic constraint to a space where it can be satisfied trivially.
A suitable criterion can be used to solve an optimization problem to find the optimal solution. In this research, the problem of path planning with simultaneous optimization of kinematics and dynamic indices has been accomplished using genetic algorithm in order to find the global optimum solution. The validity of the methodology is demonstrated by using a differential-drive mobile manipulator system, various simulations of platform with a spatial 3-link manipulator are presented to show the effectiveness of the presented method.

목차

Abstract
1. INTRODUCTION
2. KINEMATIC MODELING
3. DYNAMIC MODELING
4. OPTIMAL MOTION PLANNING
5. SIMULATIONS
6. Conclusions
REFERENCES
Appendix I: The detail of matrix J
Appendix II: The detail of equation of motion

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000937154