메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Minha Park (현대모비스) Seunghwan Seo (현대모비스) Gyutae Jung (현대모비스) Kukki Im (현대모비스)
저널정보
한국자동차공학회 한국자동차공학회 추계학술대회 및 전시회 2010년 한국자동차공학회 학술대회 및 전시회
발행연도
2010.11
수록면
74 - 82 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents tracking estimation algorithm and its feasibility analysis in computation load for the situation of multi-target automotive radar applications. Tracking algorithms have been evolved for many decades and played very important roles in space, military, and civilian sectors. Among many tracking methods, it is very critical task to utilize the most appropriate approach for each target application because there is always trade-off among performance, robustness, the computation load and etc.
In the automotive world, unlike space and military industries, more constraints like cost and size should be taken into account in development within a certain limited time frame. Among them, the computation load is very significant in real-time embedded applications because the more computation capability is totally proportional to the cost increase of the system indeed. Based on literature researches and simulations, a couple of Kalman Filters were proposed as multi-target radar tracking estimation method and simulated and both elapsed time in simulation environments and in target board were compared and analyzed. As the system needs better performance and robustness in all situations, it will require more computation load in the processor resulting in the higher cost to the end. In the further research, the computation load should be analyzed in more details to adopt the most appropriate model for the specific application.

목차

Abstract
1. INTRODUCTION
2. ESTIMATION SCHEMES
3. RADAR TRACKING ALGORITHM
4. SIMULATION RESULTS
5. CONCLUSION
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-556-001768821