메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
신정열 (한국철도기술연구원) 안태기 (한국철도) 이창길 (성균관대학교) 박승희 (성균관대학교)
저널정보
한국철도학회 한국철도학회 학술발표대회논문집 한국철도학회 2011년도 정기총회 및 추계학술대회
발행연도
2011.10
수록면
281 - 286 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Station structures, one of important infrastructures, which have been being operated since the 1970s, are especially vulnerable to even the medium-level earthquake and they could be damaged by long-term internal or external vibrations such as ambient vibrations. Recently, much attention has been paid to real-time monitoring of the fatal defect or long-term deterioration of civil infrastructures to ensure their safety and adequate performance throughout their life span. In this study, a structural health monitoring methodology using acceleration responses is proposed to evaluate the health-state of the station structures and to detect initial damage-stage. A damage index is developed using the acceleration data and it is applied to outlier analysis, one of unsupervised learning based pattern recognition methods. A threshold value for the outlier analysis is determined based on confidence level of the probabilistic distribution of the acceleration data. The probabilistic distribution is selected according to the feature of the collected data.

목차

ABSTRACT
1. 서론
2. 패턴인식 기반 역사 구조물 건전성 평가 알고리즘
3. 수치해석을 통한 자가학습 기반 건전성 평가 알고리즘 검증
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-326-001082859