메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영호 (한국이미지시스템) 김진홍 (부산정보대학)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제13권 제4호
발행연도
2010.4
수록면
504 - 511 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 인간 뇌의 내부에 존재하는 해마를 모델링한 해마 신경망을 사용하여 도시방범용 CCTV를 위한 얼굴영역 인식 시스템을 제안한다. 이 시스템은 특징추출 부분과 학습 및 인식 부분으로 구성되어 있으며, 특징 추출 부분은 PCA(Principal Component Analysis)와 LDA(Linear Discriminant Analysis) 사용하여 구성한다. 학습부분에서는 해마의 구조의 순서에 따라 입력되는 영상 데이터들의 특징을 치아 이랑 영역에서 호감도 조정에 의해 반응 패턴을 이진화 하고, 다음으로 CA3 영역에서의 자기 연상을 통해 영상에 포함되어 있는 노이즈를 제거하게 된다. 노이즈가 제거된 데이터는 CA1 영역에서 신경망을 통해 장기기억이 이루어진다. 제안한 시스템의 성능을 평가하기 위해 형태변화와 조명변화에 따른 인식률 실험을 실시하였다. 실험 결과, 본 논문에서 제안한 특징 추출 및 학습 방법을 다른 학습 방법들과 비교하였을 때, 우수한 인식률을 가짐을 확인하였다.

목차

요약
ABSTRACT
1. 서론
2. 특징계산
3. 해마신경망 모델과 구현
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004443724