메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제32권 제2호(통신이론 및 시스템)
발행연도
2007.2
수록면
141 - 149 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
영상에서 사람의 머리위치를 찾는 문제에 있어서 어깨선 정보를 이용하는 것은 아주 유용하다. 영상에서 머리 외곽선과 어깨선의 형태는 일정한 변형을 유지하면서 같이 움직이므로 이를 ASM(Active Shape Model) 기법을 사용해서 통계적으로 모델링 할 수 있다. 그러나 ASM 모델은 국부적인 에지나 그래디언트에 의존하므로 배경 에 지나 클러터 성분에 민감하다. 한편 AAM(Active Appearance Model) 모델은 텍스쳐 등을 이용하지만, 사람의 피부색, 머리색깔, 옷 색깔등의 차이로 인해서 통계적인 학습방법을 쓰기가 어렵고, 전체 비디오에서 외모(Appearance)가 시간적으로 변한다. 따라서, 본 논문에서는 외모(Apperance) 모델을 변화에 따라 바꾸는 대신, 영상의 각 화소를 머리, 어깨, 배경으로 구분하는 분별적 외모 모델(discriminative appearance)를 사용한다. 실험을 통해서 제안된 방법이 기존의 기법에 비해서 포즈변화와 가려짐, 조명의 변화 등에 강인함을 보여준다. 또한 제안된 기법은 실시간으로 작동하는 장점 또한 가진다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 특징 추출
Ⅲ. 분별적 외모를 갖는 ASM(Active Shape Model with the DA feature)
Ⅳ. 실험결과
Ⅴ. 결론 및 향후과제
참고문헌

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-567-016524237