메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 전자공학회논문지 SP편 제42권 제4호
발행연도
2005.7
수록면
95 - 102 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 해마와 피질 사이의 상호 작용을 이용하여 사용자 친화적인 객체 기반 영상 검색 시스템을 제안한다. 내용기반 영상 검색 시스템은 대부분 예제(example) 질의 혹은 스케치 질의 등을 이용하고 있고 이러한 방법들은 비교적 사용하기 불편하고 방법이 편중되어 있어서 일반 사용자들의 다양한 질의 요구에 적합하지 못하다. 제안하는 알고리즘은 CSB 트리맵(Color and Spatial based Binary tree map)을 이용하여 객체를 추출하고 지역 라벨링 알고리즘을 이용하여 객체의 색상의 상관관계, 객체의 크기와 위치 정보를 비트 스트림 형태로 변환하고 이것을 해마와 피질 사이의 상호 작용의 관계를 이용한 해마 신경망을 사용하여 학습시킨다. 사람의 뇌 속에서 어떤 패턴을 인식을 하는 경우 해당 패턴의 특이한 특징에 대해 흥분하는 세포들이 특정 신호를 발생시킨다. 이것은 흥분학습에 의해 단기기억에서 장기기억으로 저장하는 해마의 기능으로 기존의 신경망에서는 입력되는 패턴의 특성과는 상관없이 특징 개수가 모두 동일하게 비교된다. 제안하는 해마 신경망은 호감도 조정에 의해서 입력되는 영상 패턴의 특징들을 흥분학습과 억제학습을 이용하여 불필요한 특징은 억제시키고 중요한 특징은 장기기억 시켜서 적응성 있는 고속 검색 시스템을 구현한다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 객체 추출

Ⅲ. 해마 신경망

Ⅳ. 실험 및 결과

Ⅴ. 결론

참고문헌

저자소개

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017814749