메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
손종덕 (부경대학교) 뉴강 (부경대학교) 양보석 (부경대학교) 황돈하 (한국전기연구원) 강동식 (한국전기연구원)
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 2006년도 부산지부 추계학술대회 논문집
발행연도
2006.10
수록면
31 - 35 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Fault detection and diagnosis is the most important in condition-based maintenance (CBM) in industry system that usually begins from collecting signatures of running machines using multiple sensors for subsequent accurate analysis. With the quick development in industry, there is an increasing requirement of selecting special sensors that are cheap, robust, and easy-installation. This paper experimentally investigated performances of four types of sensors used in induction motors faults diagnosis, which are vibration, current, voltage and flux. In addition, Diagnostic effects of five popular classifiers also were evaluated. First, the raw signals from the four types of sensors are collected at the same time. Then the features are calculated from collected signals. Next, these features are classified through five classifiers using artificial intelligence (AI) techniques. Finally, conclusions are given based on the experiment results.

목차

Abstract
1. 서론
2. 실험
3. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-550-003082211