메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Don-Ha Hwang (Korea Electrotechnology Research Institute (KERI)) Young-Woo Youn (Korea Electrotechnology Research Institute (KERI)) Jong-Ho Sun (Korea Electrotechnology Research Institute (KERI)) Kyeong-Ho Choi (Kyungbuk College) Jong-Ho Lee (Gachon University) Yong-Hwa Kim (Yongin Myongji University)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.10 No.4
발행연도
2015.7
수록면
1,558 - 1,565 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a new method for detecting bearing faults using vibration signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations are used for a training process, and a two-stage classification process is used for detecting bearing faults and their status. The proposed approach is applied to outer-race bearing fault detection in threephase squirrel-cage induction motors. The experimental results show that the proposed method can effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis.

목차

Abstract
1. Introduction
2. Outer-race Rolling Bearing Faults
3. Proposed Diagnostic Method for Bearing Fault Detection
4. Classification Results
5. Conclusion
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0