메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 2004도 춘계학술대회 강연 및 논문 초록집
발행연도
2004.4
수록면
822 - 827 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, an intelligent fault diagnosis system is proposed for induction motors through the combination of feature extraction, genetic algorithm (GA) and neural network (ANN) techniques. Features are extracted from motor vibration signals, while reducing data transfers and making on-line application available. GA is used to select most significant features from whole feature database and optimize the ANN structure parameter. Optimized ANN diagnoses the condition of induction motors online after trained by the selected features. The combination of advanced techniques reduces the learning time and increases the diagnosis accuracy. The efficiency of the proposed system is demonstrated through motor faults of electrical and mechanical origin on the induction motors. The results of the test indicate that the proposed system is promising for real time application.

목차

Abstract
1. Introduction
2. Proposed fault diagnosis system
3. Experiment process and results
4. Summary and conclusions
Acknowledgments
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-016016673