메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
대한기계학회 대한기계학회 춘추학술대회 대한기계학회 2008년도 신뢰성부문/한국신뢰성학회 춘계 공동학술대회 논문집
발행연도
2008.6
수록면
25 - 30 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In automobile, exhaust system mainly consists of exhaust manifold, converter, flex pipe, and array of mufflers and pipes, and additional diesel particular filter in diesel engine case. And the system and components of exhaust system is always loaded dynamic forces due to engine vibration in various frequency. Although rubber isolator and flex pipe play on important role in damping, the magnitude of bumping, cornering, braking force and acceleration contribute the system fatigue damage. If exhaust system is taken severe damage force, it might be broken. Therefore, strength verification of exhaust system due to vehicle motion must be considered in early design stages. For this reason, this paper presents the methodology of RLDA in proving ground, data acquisition, data analysis, and full rig test verification. Also, this paper presents technology of transient frequency analysis of exhaust system using MSC NASTRAN and fatigue life calculation using MSC FATIGUE modal superposition technique, technology to present precise welding condition in CAE mesh, some careful point for precise prediction and so on. Effect of temperature was not considered in prediction. We compared these numerical results with full rig test results, and finally evaluated the major factors to influence the durability and ε-N curve that predict the endurance life of exhaust system. This technology to find out the endurance life of exhaust system by numerical can help to avoid full rig test with huge amount of test cost. As a result, it will be possible economically to forecast robust exhaust system design, which helps good exhaust system design.

목차

Abstract
1. 서론
2. 주행하중 계측시험
3. 대상내구시험
4. 피로내구해석
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-018662271