메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제9권 제1호
발행연도
2009.1
수록면
147 - 158 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 스트림데이터 환경의 데이터 모델은 데이터의 양이 아주 크고 연속적이며 무한하다. 이에 반해 제한된 용량의 디스크나 메모리 등을 이용해서 질의 처리나 데이터 분석을 처리한다. 이러한 환경에서 트랜잭션 데이터베이스에 대한 전통적인 빈발패턴탐사는 불가능하다고 할 수 있다. 왜냐하면, 연속적으로 들어오는 스트림 데이터에 대해 어떤 항목집합이 빈발항목인지 아닌지에 대한 정보를 계속적으로 유지 관리하기가 어렵기 때문이다. 본 논문에서는 연속적으로 들어오는 스트림 데이터에 회귀모델을 적용하여 빈발 항목들을 예측할 수 있는 방법을 제안한다. 스트림 데이터로부터 회귀모델을 생성함으로써 불확실한 항목들에 대한 예측 모델로 사용할 수 있다. 다양한 실험을 통하여 제안하는 방법이 스트림 데이터 환경의 데이터에 효율적으로 사용될 수 있음을 보인다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 회귀 분석을 이용한 빈발 항목 추출
Ⅳ. 실험 및 평가
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-004-001716644