메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서복일 (전남대학교) 김재인 (전남대학교) 황부현 (전남대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제11권 제1호
발행연도
2011.1
수록면
56 - 64 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
스트림데이터는 무한하고 연속적인 특성을 지니고 있기 때문에 전체 데이터를 기반으로 빈발 항목 집합을 탐사하는 것은 어렵다. 이 때문에 데이터의 특성과 사용자의 특성을 반영한 특수한 데이터마이닝 방법이 필요하다. 이 논문에서는 사용자가 최근에 발생한 데이터에 더 많은 관심이 있다는 특성을 반영하여 빈발 항목을 탐사하는 FIMWB 방법을 제안한다. FIMWB는 과거 데이터의 발생 시점과 현재 시점과의 시간 간격에 따라 가변적인 가중치를 배치에 부여하여 최신 데이터에 더 많은 관심과 중요성을 반영한다. FP-Digraph는 FIMWB를 통해 탐사된 빈발 항목으로 그래프를 구성하여 빈발 항목 집합을 탐사한다. 실험 결과로 FIMWB 방법이 불필요한 항목의 생성을 감소시키고 트리기반(FP-Tree)의 빈발 항목 집합 탐사에 비해 제안하는 FP-Digraph 방법이 스트림 데이터 환경에 더 적합함을 알 수 있다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 사용자 특성을 반영한 빈발항목 집합
4. 실험결과
5. 결론
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004017893