메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 CI編 第46卷 第1號
발행연도
2009.1
수록면
121 - 127 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 다단계 특징벡터를 이용한 분류기 모델(Multistage Feature-based Classiflcation Model: MFCM)을 제안하는데, MFCM은 주어진 데이터에서 추출된 특징벡터 전체를 한번에 이용하지 않고 같은 성질들의 특징벡터들끼리 모아서, 여러 단계에 걸쳐서 분류에 이용한다. 학습단계에서, 같은 성질을 가지는 특징벡터 그룹 각각을 이용하는 국지적 분류기의 분류 정확도 산출을 통해 각 특징벡터그룹의 기여도를 측정한다. 분류단계에서는 각 특징벡터 그룹의 기여도에 따라 차등적으로 가중치를 적용하여 최종적인 분류결론을 이끌어 낸다. 본 논문에서 는 MFCM의 개념을 기존의 몇 가지 분류 알고리즘에 적용하고, 음악 장르 분류 문제에 응용하여, 제안된 알고리즘의 유용성에 관한 실험을 수행하였다. 실험의 결과 제안된 MFCM을 이용하는 분류기는 기존의 알고리즘과 비교하여 분류정확도에서 평균적으로 7%-13%의 성능향상을 보여준다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 다단계 특징을 이용하는 분류모델
Ⅲ. 시험에 사용된 군집화 알고리즘
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015792951