메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박동철 (명지대학교)
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 第49卷 CI編 第2號
발행연도
2012.3
수록면
96 - 102 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
영상 분류를 위한 다단계 특성벡터 기반의 분류기 모델(Partitioned Feature-based Classification Model with Expertise Table: PFC-ET)의 성능을 더욱 향상시킨 진보된 형태의 분류기 통합모델 (Classifier Integration Model: CIM)이 본 논문에서 제안되었다. CIM은 PFC-ET과 같이 주어진 데이터에서 추출된 전체의 특징벡터를 연결하여 이용하지 않고, 같은 성질의 특징 벡터들끼리 모아서, 각각의 국지적 학습기를 통하여 분류에 이용한다. PFC-ET에서 분류판단 확률행렬에 의한 오류를 최소화 하기위해 국지적 분류기로 사용되는 군집화 알고리즘의 멤버 비율을 사용하여 최종적인 분류의 정확도를 높이는 방안을 제안한다. 제안된 CIM의 성능을 검증하기 위하여, Caltech 데이터에 대한 일반적인 영상 분류와 6 클래스 위성 영상 분류 문제에 대한 실험을 진행하였다. 제안된 CIM은 기존의 PFC 와 PFC-ET 모델과 비교한 실험에서 분류 정확도와 후처리 문제의 복잡성 면에서 향상된 성능을 보여주었다

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 다단계 특징벡터 기반의 분류기 모델들
Ⅲ. 지역분류기로 사용된 군집화 알고리즘
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-001696563