메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김재영 (명지대학교) 박동철 (명지대학교)
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 第47卷 CI編 第3號
발행연도
2010.5
수록면
36 - 41 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 다단계 특성벡터 기반의 분류기 모델(Multistage Feature-based Classification Model: MFCM)의 성능을 향상시킨 진보된 형태의 MFCM (Advanced MFCM: AMFCM)을 제안하는데, AMFCM은 MFCM과 같이 주어진 데이터에서 추출된 전체의 특징벡터를 연결하여 이용하지 않고, 같은 성질의 특징벡터들끼리 모아서, 각각의 국지적 학습기를 통하여 분류에 이용한다. 그러나, AMFCM은 MFCM에서 사용되는 각각의 국지적 분류기를 위한 각 특징벡터의 분류기여도를 더욱 섬세하게 조정하여 최종적인 분류의 정확도를 높이는 방안을 제안한다. 제안된 AMFCM의 성능을 검증하기 위하여, 음악장르 분류의 문제에 대한 실험을 진행하였다. 또한, 국지적 분류기로 Self-Organizing Map과 중심 신경망을 사용하여 실험을 수행하였는데, 제안된 AMFCM은 사용된 국지적 분류기의 종류와 사용된 군집의 개수에 따라 기존의 MFCM에 비해 평균 8% - 15% 이상의 성능향상을 보여 준다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 다단계 특징벡터 기반의 분류기 모델
Ⅲ. 진보된 다단계 특징벡터 기반의 분류기 모델
Ⅳ. 실험에 사용된 군집화 알고리즘
Ⅴ. 실험 및 결과
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-002843557