메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 CI編 第46卷 第1號
발행연도
2009.1
수록면
112 - 120 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
얼굴 등록자 인증은 얼굴 인식을 기반으로 인증하고자 하는 사람이 등록자인지, 아닌지를 판별하는 것으로, 기본적으로 2클래스 분류 문제이다. 서포트 벡터 머신(Support Vector Machine, 이하 SVM)은 2 클래스 분류 문제에 효과적인 것으로 잘 알려져 있다. 얼굴 등록자 인증의 분류에 사용되었던 기존의 SVM들은 각 클래스 (등록자 클래스, 미등록자 클래스) 구성원의 얼굴 이미지로부터 추출된 이미지 특징 벡터를 이용하여 훈련되고 인증된다. 이렇게 훈련 세트 구성원들의 이미지 특징 벡터들로 훈련된 SVM은 인증시의 얼굴 이미지가 SVM 훈련 세트의 얼굴 이미지들의 조명, 자세, 표정들과 다른 인증 환경의 경우나 등록자의 가입 및 탈퇴 등으로 등록 클래스나 미등록 클래스의 구성과 크기에 변동이 생기는 인증 환경의 경우에, 강인한 성능을 보이기 어려웠다. 본 논문에서는 강인한 얼굴 등록자 인증을 위하여, 효과적인 클래스 구별 특징 벡터 기반 SVM을 제안한다. 훈련과 인증에 사용되는 특징 벡터는 2개의 클래스를 잘 구별할 수 있는 특성을 반영하도록 선택되었기 때문에 이를 이용하여 훈련된 제안된 SVM은 등록자 클래스 구성의 변화 및 얼굴 이미지에 있어서의 조명, 얼굴 자세, 얼굴 표정의 변화에 덜 영향을 받는다. 실험을 통해 제안된 SVM에 기반을 둔 얼굴 등록자 인증 방법이 기존 SVM에 기반을 둔 방법보다 성능이 더 나으며, 등록자 클래스 구성의 변화에도 강인함을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 서포트 벡터 머신 및 얼굴 가버 유사도
Ⅲ. 클래스 구별 특징 벡터 기반 SVM
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015792946