메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 유비쿼터스 컴퓨팅에 대한 관심이 높아지면서 유비쿼터스 환경에서의 서비스를 위한 인간과 컴퓨터의 상호 작용, 특히 인간의 행동을 인식하는 연구가 활발히 진행되고 있다. 기존의 영상기반 연구와는 달리 모바일 환경에 적합하도록 가속도 센서, 생리신호 센서 등 다양한 센서들을 활용하여 사용자의 행동을 인식하는 기법이 연구되고 있다. 본 논문에서는 멀티모달 센서들을 통합하고 동적 베이지안 네트워크를 계층적으로 구성하여 사용자의 행동을 인식하는 방법을 제안한다. 연산량이 비교적 적은 베이지안 네트워크로 전반적인 사용자 행동을 추론하고 획득된 각 행동의 확률순으로 동적 베이지안 네트워크를 구성한다. 동적 베이지안 네트워크는 OVR(One-Versus-Rest) 전략으로 학습되며, 확률순으로 행동이 검증되어 임계치를 넘는 경우 선택된 행동보다 낮은 확률의 행동에 대한 동적 베이지안 네트워크를 검증하지 않아 추론 연산량을 줄인다. 본 논문에서는 가속도 센서와 생리적 신호 센서를 기반으로 총 8가지의 행동을 인식하는 문제에 제안하는 방법을 적용하여 평균적으로 97.4%의 분류 정확률을 얻었다.

목차

요약
Abstract
1. 서론
2. 배경
3. 제안하는 방법
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015755607