메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제17권 제3호
발행연도
2007.6
수록면
374 - 379 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문은 전력계통의 배전계통시스템에서 FRTU(Feeder remote terminal unit)의 고장검출 알고리즘의 개선에 관한 연구이다. FRTU는 상과 지락에 관한 고장검출을 할 수 있다. 특히 고장픽업 기능과 돌입억제기능은 일반적인 부하전류로부터 고장전류를 구별할 수 있다. FRTU는 돌입전류 또는 설정값을 초과한 고장잔류가 발생하면 고장표시기(FI)로 고장을 발생한다. 짧은 시간 푸리에 변환(STFT) 분석은 주파수와 시간에 관한 정보를 제공하고, 퍼지 중심 평균 클러스터링(FCM) 알고리즘은 고조파의 특성을 추출한다. 고장 검출기의 신경회로망 시스템은 최급강하법을 이용하여 고장상태로부터 돌입전류를 구별하도록 학습된다. 본 논문에서는 FCM과 신경회로망을 이용하여 고장검출기법을 개선하였다. 검증에 사용된 데이터는 22.9KV 배전계통 시스템애서 실제 측정된 데이터이다.

목차

요약
Abstract
1. 서론
2. 고장표시(Fl) 운영 알고리즘
3. 클러스터링(Clustering) 알고리즘
4. STFT을 이용한 고조파 검출
5. 신경 회로망(Neural Network)
6. 시뮬레이션
7. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015072294