메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제15권 제6호
발행연도
2005.12
수록면
673 - 681 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
원자력 발전소는 안정성 빚 신뢰성 확보가 가장 중요하므로 고장의 감지 및 진단 시스템의 개발은 원전 자체가 구축하고 있는 다중의 하드웨어 중첩도(hardware redundancy)에도 불구하고 가장 중요한 문제로 취급되고 있다. 본 논문에서는 원 전 PWR 증기발생기에서 발생한 고장을 진단하기 위한 알고리듬의 개발을 위해 시스템에서 발생한 고장을 감지하고 분류 할 수 있는 ART2 신경회로망 기반 고장진단방법을 제안한다. 고장진단시스템은 발생한 고장을 감지하기 위한 고장감지부, 변화된 시스템파라미터를 추정하기 위한 파라미터 추정부 및 발생한 고장의 종류를 알아내기 위한 고장분류부로 구성된다. 고장분류부는 여러 경계인수를 갖는 ART2(adaptive resonance theory 2) 신경회로망을 이용한 고장분류기로 구성된다. 제안한 고장진단 알고리듬을 증기발생기의 고장진단문제에 적용하여 성능을 확인하였다.

목차

요약
Abstract
1. 서론
2. 원전 PWR 증기발생기
3. 입출력 모델기반 고장진단기법
4. 시뮬레이션결과 및 고찰
5. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014955747