메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
洪大昇 (남서울대학교) 高鈗錫 (남서울대학교) 姜泰求 朴學烈 任化永 (광운대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제56권 제7호
발행연도
2007.7
수록면
1,183 - 1,190 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes the improved fault decision algorithm using DWT(Discrete Wavelet Transform) and ANNs for the FRTU(Feeder Remote Terminal Unit) on the feeder in the power distribution system. Generally, the FRTU has the fault decision scheme detecting the phase fault, the ground fault. Especially FRTU has the function for 2000㎳. This function doesn't operate FI(Fault Indicator) for the Inrush current generated in switching time. But it has a defect making it impossible for the FI to be operated from the real fault current in inrush restraint time. In such a case, we can not find the fault zone from FI information. Accordingly, the improved fault recognition algorithm is needed to solve this problem. The DWT analysis gives the frequency and time-scale information. The new-a! network system as a fault recognition was trained to distinguish the inrush current from the fault status by a gradient descent method. In this paper, fault recognition algorithm is improved by using voltage monitoring system, DWT and neural network. All of the data were measured in actual 22.9㎸ power distribution system.

목차

Abstract
1. 서론
2. 고장표시기(Fault Indicator) 운영 알고리즘
3. 웨이블릿 변환(Wavelet Transforms)
4. 신경 회로망(Neural Network)
5. 전압 감시정보를 이용한 고장검출 알고리즘
6. 시뮬레이션 결과
7. 결론
감사의 글
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-560-019042819