메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제16권 제5호
발행연도
2006.10
수록면
519 - 524 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자궁 경부암 세포진 영상의 영역 분할은 슬라이드의 상태나 정상 및 비정상에 따라 많은 차이를 보여 자궁 경부암 세포진 인식 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 본 논문에서는 자궁 경부 세포진 영상에서 퍼지 그레이 모폴로지 연산을 이용하여 핵을 추출하고, 추출된 세포진 핵 영역은 형태학적 정보와 명암 정보, 색상 정보 및 질감 정보를 분석하여 핵의 특징을 추출한다. 또한 Bethesda System에서의 분류 기준에 따라 핵의 분류 기준을 정하고 추출된 핵의 특징 들을 개선된 퍼지 ART 알고리즘에 적용하여 실험한 결과, 제안된 방법이 자궁 세포진 핵의 추출과 인식에 있어서 효율적임을 확인하였다.

목차

요약
Abstract
1. 서론
2. 자궁 경부 세포진 핵 영역 분할
3. 암세포 인식을 위한 핵 특징 추출
4. 퍼지 ART 알고리즘을 이용한 핵 분류 및 인식
5. 실험 및 결과 분석
6. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014955929