메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종배 (서울디지털대학교)
저널정보
대한전자공학회 전자공학회논문지-SP 電子工學會論文誌 SP編 第45卷 第4號
발행연도
2008.7
수록면
10 - 21 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 실시간 감시 시스템을 위한 웨이블릿(wavelet) 기반의 신경망과 불변 모멘트를 이용한 이동물체 인식과 추적 방법을 제안한다. 제안한 방법의 첫 번째인 움직임 후보영역 검출 단계에서는 연속된 두 프레임간의 차영상 분석 방법을 기반으로 하여 물체의 움직임에 의해 화소값 변화가 발생한 후보영역을 검출한다. 두 번째인 물체 인식 단계에서는 검출된 후보영역에 웨이블릿 신경망(wavelet neural network: WNN) 기반의 인식 방법을 사용하여 추적하고자하는 물체가 포함되어 있는지를 판별한다. 세 번째인 물체 추적 단계에서는 인식된 물체에 웨이블릿 불변 모멘트(invariant moments) 기반의 매칭 방법을 사용하여 인식된 이동 물체를 추적한다. 영상내에서 이동물체를 검출하기 위해 본 논문에서는 이전 영상과 현재 영상간의 화소밝기 차이에서 적응적 임계값(adaptive threholding)을 사용하여 주위 환경 변화에 강인한 이동물체 검출이 가능하였다. 또한 물체의 인식과 추적을 위해 웨이블릿 특징값을 사용함으로써, 계산 시간의 감소와 영상의 잡음에 의한 영향을 최소화시킬 수 있을 뿐만 아니라, 물체 인식 정확도가 향상되었다. 제안한 방법을 일반 도로에서 획득한 영상에서 실험한 결과, 자동차 검출율은 92.8%, 프레임당 처리 시간은 0.24초이다. 이것을 통해 제안한 방법은 실시간 지능형 교통 감시 시스템에 유용하게 적용될 수 있음을 알 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 후보영역 검출
Ⅲ. 웨이블릿 신경망 기반의 물체 인식
Ⅳ. 웨이블릿 불변 모멘트 기반의 물체 추적
Ⅴ. 실험 결과
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-014935934