메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제11권 제2호
발행연도
2001.4
수록면
101 - 108 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 배전선로에서 발생하는 여러 고장유형을 판별하기 위해서 적응형 퍼지추론 시스템을 적용하는 새로운 기법을 제시하였다. 배전선로의 고장과 고장유사현상 데이터를 추출하기 위해서 EMTP를 이용하여 RL부하, 아크로부하, 컨버터부하가 있는 배전계통을 구성하고 여러 형태의 고장과 고장유사현상에 대해 시뮬레이션을 하였다. 이를 통해 얻은 전류파형으로부터 기본파성분, 영상분전류, 짝수 고조파성분의 합, 홀수 고조파성분의 합, 그리고 비정규 고조파성분의 합의 5개의 입력변수를 추출하고 학습을 통해서 각 입력변수의 소속함수의 소속도를 자동으로 결정하였다. 이 적응형 퍼지추론 시스템을 이용한 기법을 평가하기 위해서 학습시와 다른 고장상황을 모의하여 얻은 데이터와 실증시험 데이터를 이용하였다. 결과적으로 제안한 기법은 배전선로에서 발생하는 고장유형을 빠르고 정확하게 판별할 수 있었다.

목차

요약
ABSTRACT
1. 서론
2. 배전선로의 고장유형 판별을 위한 알고리즘
3. 사례 연구
4. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014804256