메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보보호학회 정보보호학회논문지 情報保護學會論文誌 Vol.14 No.3
발행연도
2004.6
수록면
41 - 48 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
유한체의 곱셈과 나눗셈은 오류정정부호와 암호시스템에서 중요한 산술 연산이다. 유한체 GF(2<SUP>m</SUP>) 의 원소를 표현하기 위해 다양한 기저가 사용되며 차수가 m 인 GF( 2 ) 상의 원시다항식으로 구성할 수 있다. 정규기저를 사용하면 곱셈이나 곱셈 역원의 연산을 쉽게 수행할 수 있다. 정규기저 표현을 이용하는 Massey-Omura 승산기는 동일한 2진함수를 사용하여 몇 번의 순회치환으로 곱셈 또는 나눗셈이 수행되며 논리함수의 곱셈항 수가 승산기의 복잡도를 결정한다. 유한체의 정규기저는 항상 존재한다. 그러나 주어진 원시다항식에 대해 최적의 정규원소를 구하는 것은 쉽지 않다. 본 논문에서는 정규기저의 생성 방법을 고찰하고, Massey-Omura 승산기를 이용한 곱셈 또는 곱셈 역원의 계산에서 연산의 복잡도를 최소화할 수 있는 정규기저를 각 원시다항식에 대해 구하여, 최적의 정규원소와 곱셈항의 개수를 제시한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 유한체 GF(2m) 의 기저
Ⅲ. Massey-Omura 승산기
Ⅳ. 정규기저의 생성
Ⅴ. 결론
참고문헌
〈著者紹介〉

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015937845